Do Away with the Frankensteinian Programs!
A Proposal for a Genuine SE Education

Simon Dierl, Falk Howar, Malte Mues, Stefan Naujokat, and Till Schallau
Department of Computer Science, TU Dortmund University, 44227 Dortmund, Germany
Email: {simon.dierl, falk.howar, malte.mues, stefan.naujokat, till.schallau}@tu-dortmund.de

Abstract—It is widely accepted by now that the discipline of
Software Engineering is distinct from both Computer Science
and Electrical Engineering, and that it requires bespoke higher
education programs. In this paper, we argue that previous
attempts at designing such programs have often failed to fully
account for three essential characteristics of the discipline.
We propose a design philosophy for undergraduate Software
Engineering programs addressing these particularities and outline
a corresponding program. Incorporating this philosophy would
make Generation Alpha the first generation to receive a genuine
Software Engineering education.

I. INTRODUCTION

When the term Software Engineering was coined during the
NATO conferences of 1968 [1] and 1969 [2], the participants
were in general agreement that some form of higher education
for software engineers was merited. They did not, however,
agree on the nature and contents of such an education program.
Discussed approaches included purely abstract programs,
programs including hardware design and programs focusing
on teaching programming.

Today, with the ever-increasing digitization of all aspects
of society during the past decades, there is an urgent and
unprecedented demand for qualified software engineers: Engi-
neers traditionally build the infrastructure of a society and the
infrastructure of the 21% century is built as software. Commu-
nication, science, health care, transport, utilities, government,
entertainment — today, all of these societal systems rely on a
digital infrastructure. Software will enable more sophisticated
automation and autonomous systems in the future. It is high
time that the engineers of these systems receive a genuine
engineering education and embody the values traditionally
associated with an engineering discipline: economic viability,
ethical behavior, positive societal impact, and plannable results.

Universities have implemented Software Engineering and
Computer Science programs (which we collectively refer to as
Informatics programs) with different scopes, philosophies, and
contents during the last half-century. Since the field of Software
Engineering has matured substantially during this time', we can
positively define many aspects of Software Engineering today —
without the need for analogies. E.g., instead of working towards
the start of production during design, the start of delivery during
production, and the end of service obligations during operation

!Consider, e.g., Shaw’s 1990 [3] (“not yet a true engineering discipline, but
it has the potential to become one”) and 2016 [4] (“[i]t’s emerging, but still
very spotty”) progress estimations.

with completely different challenges and disciplines, software
is developed and released continuously in many instances —
leading to genuine Software product life-cycles, process models,
and organizational structures.

This progress allows us to move away from designing
Software Engineering education as a specialization in other
disciplines and to recognize three misconceptions in current pro-
grams stemming from design by analogy: Software Engineering
is neither analogous to Computer Science plus programming,
nor a classic Engineering discipline for computers, and it does
not require prior domain knowledge. We reckon that the time to
act on this knowledge is now. By starting today with designing
and implementing genuine Software Engineering programs that
address these issues, Generation Alpha, i.e., the generation
entering universities between 2030 and 2045, will benefit from
this education.

We will present our proposal by outlining the underlying
philosophy, then sketching a corresponding program, and finally
projecting on further evolution over the next 20 years. Other
program proposals and related research in Software Engineering
education are discussed throughout the paper.

II. PROGRAM DESIGN PHILOSOPHY

This section presents three misconceptions about the nature
of Software Engineering and its communication often found
in current educational program designs. Subsequently, we will
present three theses as counterpoints that characterize our
design philosophy for Software Engineering programs.

A. Misconceptions in Design-by-Analogy

1) Software Engineering is Computer Science Plus Program-
ming: In this model, Software Engineering is taught using a
modified version of a Computer Science program. A set of
modules is replaced by more programming-focused courses
and business administration modules; alternatively, these are
taught in a subsequent master’s program. The remaining
courses are shared as-is with the Computer Science program.
This pattern can be seen in the recommendations of the GI?
for Informatics [5] and Technical Informatics programs [6].
The AICTE® model curriculum for Computer Science &
Engineering [7] does not include any Software Engineering
and therefore industrial trainings have to fill this gap [8], [9].

>The GI is Germany’s counterpart to the ACM, https:/gi.de.
3AICTE is the Indian advisory board for technical education.

https://gi.de

2) Software Engineering is Engineering for Computers: In
this model, Software Engineering programs are derived from
other Engineering programs. Substantial parts of these programs
are devoted to multidisciplinary science while mathematics
is taught in the form of scientific computing. This model
underlies AICTE’s [7] and the Russian Ministry of Science
and Education’s [10] model curricula and was advocated by
Parnas in [11].

3) Software Engineering Requires Prior Domain Knowledge:
This model argues that to learn Software Engineering, one
needs to understand (and specialize in) an application domain.
Students must select a technical or engineering program and
pass several foundational courses. Such skills are recommended
by the GI [5] and the ACM/IEEE Joint Task Force on
Computing Curricula [12].

B. Design Principles Beyond Analogies

We argue that all three designs are ill-conceived and derive
three essential characteristics of Software Engineering from
the discussion on them.

1) Software Engineers Build Digital Infrastructure: Com-
puter Science and Software Engineering are two different
professions, which needs to be reflected in their education.
Vincenti [13] describes the difference between practitioners as
the purpose of their work: Engineers create practical utility
while scientists want to attain understanding. Their work
requires a fundamentally different perspective, even though
they apply the same knowledge. When learning about, e.g.,
finite automata, the computer scientist may care about creating
similar models and studying their properties, while the software
engineer cares about the applications in system design.

As a result, a genuine Software Engineering program will
share parts of its subject matter with a Computer Science
program, but needs to instill a different understanding of
this matter and a distinct set of skills (e.g., design-space
exploration instead of theory building). Sharing similar modules
with a Computer Science program necessarily hampers the
understanding of one group of students. Ideally, both programs
only use bespoke modules tailored to the work the students
train for. We discuss this issue in detail in Section ITI-A2.

2) Software Engineering is Founded in Structural Science:
Software Engineering is an Engineering discipline because
its focus is the design of technical systems. However, due to
the abstractions provided by logic circuits, its pursuit does not
require a general education in natural sciences, but in Mathemat-
ics. Weizsicker [14] described Mathematics and Informatics as
structural sciences, i.e., the study of a well-defined, axiomatized
structure, to distinguish it from natural sciences such as
Physics that study natural phenomena. Software Engineering
uses axiomatized structures to automate processes located in
the physical world. Instead of the foundational knowledge of
natural sciences taught to other engineers, software engineers
thus require mathematical foundational skills to perform their
work. This is discussed further in Section III-Al.

Therefore, a Software Engineering program must contain
mathematical fundamentals (e.g., Proof Theory), discrete

mathematics (e.g., Algebra and Type Theory), and continuous
mathematics (e.g., Analysis and Statistics). It should neither
include the natural science courses (e.g., Chemistry) nor
the scientific computing courses found in other engineering
programs.

3) Software Engineering is Domain-Agnostic: The essential
skills and methods of a software engineer (e.g., elicitation
of requirements, design, validation, cost estimation, etc.) are
independent of concrete application domains, long-lived, and
stable. Practical knowledge (e.g., about concrete designs,
solutions, metrics, etc.) can be domain-specific and short-lived.

Modern software systems have become sufficiently complex
that undergraduate programs must focus on imparting a T-
shaped skill set [15]. A T-shaped software engineer has
foundational knowledge of general Computer Science topics
and is deeply specialized in the engineering of IT systems.
As requirements elicitation becomes part of their day-to-day
business, they do not need to learn the specifics of a certain
domain (e.g., online shops or automotive software). Instead,
they can employ their engineering skill set to adapt smoothly
to the domain when tackling a new engineering task.

Therefore, a Software Engineering program should not
include specific application domains. Specialization should
instead focus on classes of systems (e.g., web applications
or real-time systems). See Sections III-A5 and III-A8 for
discussions of this issue.

III. SAMPLE PROGRAM OUTLINE

While the main point of our proposal is the novel design
philosophy described in the previous Section, we now apply
it to derive a (fictitious) Software Engineering program. We
do not provide a topic-precise allocation of credits or a list of
modules, but assign a weight to certain knowledge areas and
special activities. Weight should correspond to the time spent
on each area and the credits allocated to its modules. In the
following sections, we will detail the rationale for inclusion or
exclusion, contents and proposed classroom activities for each
knowledge area and special activity.

We summarize our proposal in Table I and compare it to
model curricula from Germany, India, Russia and the USA
available online. In addition, we compare it to two Computer
Science programs with Software Engineering minors from
Carnegie Mellon University [16], [17] and the University of
Ilinois [18], [19]. While our proposed program substantially
deviates from the model curricula, it is closer in weight
distribution to the programs taught at these schools.

A. Knowledge Areas

1) Mathematical Foundations: As Mathematics has been
used for modeling in technical subjects for centuries, it is
not surprising that software engineers require it as well.
In addition, mathematical notation is omnipresent in the
Informatics world. The curriculum should cover some of the
mathematical foundations listed in the SWEBOK [20], focusing
on logic, proof techniques, discrete probability, and algebraic
structures. Our weight allocation is similar to most model

Knowledge Area

Weight

Ours GI1' GI2! A/ME-1> AICTE} POOP* Parnas® CMU® Uol’
Mathematical Foundations 7% 3% 12% 8 % 9% 13% W) 13% 16%
Computer Science Foundations 7% 17 % 12 % 8 % 11 % 5% W) 15% 16 %
Programming Foundations 12 % 9 % 7 % 8% 8% 11% v 4% 5%
Engineering Foundations — — — — 24 % 8% v 10 % 9 %
Software Engineering Core 22 % 12 % 19 % 25 % — 9% W) 20% 18%
Advanced Topics 17 % 23 % 26 % 8 % 9% 13% v 14% 22%
Economics, Ethics, and Management 13 % 12 % — 13 % 5% 5% W) 15 % 14 %
Technical Writing and Presentation 4% 2 % 2 % — 2% 5 % — 3% —
Informatics Elective — 10 % — 21 % 11% 12 % — 5 % —
Secondary Subjects and General Education — — 14 % 11% 10 % v <1% —
Standalone Project — 5% — — — 3% — — —
Industrial Internship 8% — — — — 2 % — — —
Senior Thesis or Project 10 % 8% 8% 8% 9 % 4% v — —

! GI recommendations [5], sample programs 1 and 2.

3 AICTE Model Curriculum for Undergraduate Degree Courses in Computer Science & Engineering [7].
3 Example from [11]. v~ signifies that the area is present, and (v") that it significantly deviates from our approach.

Curriculum [10].

6 Carnegie Mellon University’s B.S. in Computer Science [16] with Software Engineering Minor [17].

Software Engineering Certificate [19].

2 ACM/IEEE Joint Task Force on Computing Curricula’s guidelines [12], pattern E-1 for three-year programs.

4 Russian Ministry of Science and Education’s Sample Core

7 University of Ilinois’ B.S. in Computer Science [18] with

TABLE I
COMPARISON OF THREE-YEAR BACHELOR’S PROGRAM LAYOUTS FOR INFORMATICS

curricula. We do not advocate the use of Scientific Computing
courses focusing on the application of formulas often taught
in other engineering disciplines, since a “deeper” background
in math is an essential part of the skill set.

2) Computer Science Foundations: For Computer Science
foundations, Software Engineering students should learn the
basics of data structures and algorithms as well as theoretical
foundations, covering formal languages, automata, and com-
plexity theory. The focus should be on a basic understanding
of the relevant theorems and proofs, and the application of
the contents in Software Engineering, so dedicated courses for
Software Engineering students are advisable.

As this block only forms the foundation of the software
engineer’s T-shape, we reduce the weight in comparison with
most Computer Science-derived programs. Since this area
already focuses on practical applications, the didactic format
should follow. Frontal instructions should be reduced, while
the students increasingly train their skills in modeling and
programming projects.

3) Programming Foundations: As programming techniques,
programming paradigms, and programming languages are
a fundamental part of a software engineer’s “toolbox”, the
program aims for in-depth knowledge in these areas. The use
of software tools (e.g., build tools and debuggers) is equally
important, so a module similar to the “The Missing Semester of
your CS Education” [21] should also be included. This block’s
modules would require students to write programs in different
(not necessarily mainstream) languages following various
programming paradigms, such as imperative, declarative, and
functional. This block is substantially larger than in most
models. We refer to the survey of Marques et al. [22] for an
overview of effective didactic approaches for this and other
Software Engineering subjects but believe that a focus on
practical application in projects is essential.

4) Software Engineering Core: The Software Engineering
topics in the curriculum should provide in-depth knowledge
about software construction and operations, spanning the
complete software life-cycle, i.e., requirements elicitation
and software development, production, and maintenance. As
engineers have to construct systems using principled methods,
this block is the “heart” of the Software Engineering program.
Since software engineers must be fluent in modeling languages,
these should also be taught and applied in this block.

Students will learn to understand the knowledge codified by
design patterns and how to write architecture descriptions for
their own software systems. A Software Architecture course
should showcase different state-of-the-art architecture patterns
(e.g., microservices or lambda architectures) and compare them
to more traditional patterns like client-server systems. The focus
should be on the trade-offs made when choosing an architecture.
This helps students to develop a better understanding of
important metrics for monitoring architectures during operation.

Students have to learn how to create realistic test scenarios
and extrapolate a system’s real performance from measured
values. The focus should be on performance indicators that
might help to identify early bottlenecks in operation. E.g.,
performing a load performance test against a server should
become part of a hands-on project. Finally, security has become
such a central concern for any type of software development
that it should be included in this core area. Students will
learn to identify and avoid vulnerabilities, but also perform
analyses such as penetration testing. For these modules, hands-
on experience is invaluable, so frontal instruction should be
reduced to a minimum. Techniques such as problem-based
learning [23] can make the creation of solutions a core part of
the learning experience and are already applied in case-studies
with promising results [22], [24]-[26]. The learning outcome
should be a profound understanding of the design, construction,
and validation of Software, combining an engineering skill set

and knowledge of existing methods and approaches.

5) Advanced Topics: While the previous area focused on
Software Engineering fundamentals, this area covers more
specific fields such as computer organization, database systems,
human-computer interactions, networking, operating systems,
and web technologies. A software engineer should possess basic
knowledge in all of these areas [27], although a program could
permit some degree of choice here by offering introductory
and in-depth modules — potentially grouped by specializations
— for each. Our weight allocation lies between the high amount
recommended by the GI and the low emphasis placed by the
ACM/IEEE, reflecting our emphasis on T-shaped people: they
should be well-versed in their core Software Engineering skills
and reasonably proficient in a Software Engineering-related
topic. Didactic approaches to this field should be identical to
those recommended for the core Software Engineering modules,
i.e., a heavy emphasis on practical application.

6) Economics, Ethics, and Management: Software engineers
have to understand business models, cost controlling, legal
restrictions, and licensing concerns. In addition, they have to
lead development teams during their career or work together
with other software engineers, necessitating team organization
and project management skills [8], [24]. With the increasing
effect of software-based automation on our daily lives, ethics
becomes an important aspect of the formation of a software
engineer. An education in Ethics and an intense discussion
about a professional code of conduct should be included in
the education. Notably, many model curricula allocate far less
space to this, with the GI omitting both legal and ethical aspects
entirely. Classroom techniques will need to vary between more
instructive formats for Economics and Law and discussion-
centric formats for Ethics.

7) Technical Writing and Presentation: The program must
prepare students for writing scientific theses as well as
documenting and presenting their work in a professional
or academic setting. In this area, students should learn the
fundamentals of scientific workmanship and writing as well as
presentation skills. Formats for this might include workshop-
like formats and seminar papers.

8) Informatics Elective Courses and Secondary Subjects:
Often, programs reserve space for elective courses or secondary
subjects (e.g, Physics or Electrical Engineering) [5], [11]. We
do not include secondary subjects in our program, since we
do not recommend them for undergraduate programs. Elective
courses should focus on the Computer Science foundations
and advanced Software Engineering areas.

B. Special Activities

1) Standalone Projects: Programs frequently include a
“project” module in which students are supposed to create
a software artifact, often in a group (e.g., [9], [28], [29]).
While we consider this to be an essential skill for software
engineers, we consider the notion of a dedicated module to be
misguided. Instead, project work must be a constant companion
throughout the program. If possible, each module should be
accompanied by a project, fitted to the learning outcomes.

2) Industrial Internships: Whenever we talk to company
representatives, they ask us how they might cooperate better
with academia. We are convinced that one way of cooperation
between industry and academia are industrial internships. When
interning at a company, students will experience real-world
Software Engineering. We expect this to stimulate new ideas
and areas of interest and trigger discussion among the students.
This way, they get a first glimpse of industry, while industry
has a chance to seed new discussions in universities. The
internship model works quite well in many countries, but is
virtually absent from German Informatics in Academia.

3) Senior Thesis or Project: We conclude the program with
a thesis or project. While in Computer Science programs, a
senior thesis concentrates on scientific work (e.g., studying
a hypothesis or proving a theorem), a Software Engineering
program’s conclusion should be based on engineering work.
This might either take the form of a senior project (i.e., the
creation of a complete software-based solution), which is
primarily judged on its technical merits, or a more theoretical
work in the field of Software Engineering in the form of
a thesis. To accommodate the time-intensive creation of a
complete software project, we allocate more weight to this
than existing model curricula.

IV. OUTLOOK AND CONCLUSION

In this paper, we focused on designing a genuine program
for Software Engineering education that is both distinct from
current practice and earlier propositions. Of course — being just
the first step — the program will have to evolve along major
changes in the field. We state three example areas that we
expect to have a considerable impact in the near future.

1) Artificial Intelligence in Software Engineering: Apart
from being an immensely fast-growing field of research,
widespread applications of Al are becoming more and more
popular. We expect Al to take a modular role in software
systems (e.g., for processing sensor data), similar to data
structures and algorithms today. Thus, software engineers need
to be taught Al basics to effectively evaluate and integrate an
Al-based solution into their system, without requiring a deep
understanding of the methods.

2) Standardization and Professional Organizations: The call
for professional certification of software engineers — similar
to most other engineering disciplines — as, e.g., discussed by
McConnel [30] in 2004 and by Kruchten [31] in 2008, has
long accompanied Software Engineering. If these demands
are realized, education programs will be forced to change to
match. E.g., if a standardized verification technique or modeling
language becomes a certification requirement, universities must
include it in their curriculum to either prepare for a subsequent
certification exam or to have degrees recognized as equivalent.

3) Low Code and DSLs: As the ubiquitous need for
automation likely will continue to grow exponentially [32],
[33], we will reach the point where automation tasks can’t be
performed by professional software engineers alone anymore.
A way to counter this is to provide better abstractions enabling
a profession of “automation craftsmen” to develop solutions

based on architectures with built-in design decisions, like, e.g.,
the currently trending “Low Code” platforms [34]. Another
way is to enable workers of all application domains to
perform automation tasks during their day-to-day work, for
which they will require simple and specialized configuration
options. Here, domain-specific (modeling) languages [35],
[36] with an automatically evaluating environment seems
promising. For both ways, software engineers need to develop
the required concepts, frameworks, and tools. Thus, in the
future, metamodeling and language engineering skills need to
be emphasized in Software Engineering education.

By implementing the proposed program today and contin-
uously adapting it to the field’s ongoing evolution, a mature
higher education for software engineers will be available when
Generation Alpha begins entering universities in ten years.

AUTHORS’ PROFILE

All authors research and teach (as professor, post-doc, and
PhD students) at the chair for Software Engineering of the
Computer Science department at TU Dortmund University,
Germany. Our teaching activities range from basics in Software
Engineering (incl. programming lab) over (domain-specific)
modeling techniques to formal aspects like automata theory and
software verification. The analyses, projections and positions
expressed in this paper stem from extensive discussions among
all authors on how to change lectures, individual teaching
techniques, and even curricula, so that Informatics students
can become more proficient in software development.

REFERENCES

[1]1 P. Naur and B. Randell, Eds., Software Engineering, Garmisch, Germany,
Jan. 1969.

[2] J. N. Buxton and B. Randell, Eds., Software Engineering, Rome, Italy,
Apr. 1970.

[3] M. Shaw, “Prospects for an engineering discipline of software,” IEEE
Software, vol. 7, no. 6, pp. 15-24, 1990, doi: 10.1109/52.60586.

[4] M. Shaw, “Progress toward an engineering discipline of software,” in
2016 IEEE/ACM 38th International Conference on Software Engineering
Companion (ICSE-C), Austin, TX, USA. IEEE, 2016, pp. 3-4.

[5] O. Zukunft, Empfehlungen fiir Bachelor- und Masterprogramme im
Studienfach Informatik an Hochschulen, ser. GI-Empfehlungen. GI, Jul.
2016. [Online]. Available: https://dl.gi.de/handle/20.500.12116/2351

[6] E. Maehle, Curriculum fiir Bachelor- und Masterstudiengdnge
Technische Informatik, ser. G/ITG-Empfehlungen. GI, Mar. 2018.
[Online]. Available: https://dl.gi.de/handle/20.500.12116/16384

[7]1 All India Council for Technical Education, Model Curriculum for
Undergraduate Degree Courses in Engineering & Technology. New
Delhi: All India Council for Technical Education, Jan. 2018, vol. 1.
[Online]. Available: https://www.aicte-india.org/education/model-syllabus

[8] K. Garg and V. Varma, “Software engineering education in india: Issues
and challenges,” in 2008 21st Conference on Software Engineering
Education and Training. 1EEE, 2008, pp. 110-117.

[9] R. Mahanti and P. Mahanti, “Software Engineering Education From Indian

Perspective,” in 18th Conference on Software Engineering Education &

Training (CSEET’05). IEEE, 2005, pp. 111-117.

I. V. Rudakov, A. V. Proletarskij, and T. I. Buldakova, Sample Core

Curriculum. Federal Educational-Methodical Association in the System

of Higher Education in “Informatics and Computer Engineering”,

Sep. 2017, in Russian. [Online]. Available: http://xn--nlaabc.xn--

plai/poop/lccd4clScc8843e8abcd6e225ea930fa

D. L. Parnas, “Software Engineering programs are not Computer

Science programs,” IEEE Software, vol. 16, no. 6, pp. 19-30, 1999,

doi: 10.1109/52.805469.

[10]

(1]

[12] The Joint Task Force on Computing Curricula, Curriculum Guidelines
for Undergraduate Degree Programs in Software Engineering, ser.
Computing Curricula. New York, NY, USA: Association for Computing
Machinery, Feb. 2015, doi: 10.1145/2965631.

W. G. Vincenti, What Engineers Know and How They Know It. Baltimore
and London: John Hopkins University Press, 1990.

C. F. von Weizsicker, Die Einheit der Natur: Studien. Miinchen: Hanser,
1971.

D. L. Johnston, “Scientists become managers-The *T’-shaped man,” IEEE
Engineering Management Review, vol. 6, no. 3, pp. 67-68, 1978, doi:
10.1109/EMR.1978.4306682.

Carnegie Mellon University. Computer Science program:
Curriculum - B.S. in Computer Science. [Online]. Available: http:
//coursecatalog.web.cmu.edu/schools-colleges/schoolofcomputerscience/
undergraduatecomputerscience/#bscurriculumtext

Carnegie Mellon University. Software Engineering minor. [Online].
Available: https://www.isri.cmu.edu/education/undergrad/se-minor/index.
html

University of Illinois. B.S. in Computer Science. [Online]. Avail-
able: https://cs.illinois.edu/academics/undergraduate/degree-program-
options/bs-computer-science

University of Illinois. Software Engineering certificate. [Online]. Avail-
able: https://cs.illinois.edu/academics/undergraduate/degree- program-
options/software-engineering-certificate

P. Bourque and R. E. Fairley, Eds., Guide to the Software Engineering
Body of Knowledge, version 3.0 ed. Los Alamitos, CA: IEEE Computer
Society, 2014. [Online]. Available: https://www.computer.org/education/
bodies-of-knowledge/software-engineering

A. Athalye, J. Gjengset, and J. J. Gonzalez Ortiz. Why we are teaching
this class. [Online]. Available: https://missing.csail.mit.edu/about/

M. R. Marques, A. Quispe, and S. F. Ochoa, “A systematic mapping
study on practical approaches to teaching Software Engineering,” in 2014
IEEFE Frontiers in Education Conference (FIE) Proceedings, 2014, pp.
1-8, doi: 10.1109/FIE.2014.7044277.

H. S. Barrows, “Problem-based learning in Medicine and beyond: A
brief overview,” New Directions for Teaching and Learning, vol. 1996,
no. 68, pp. 3-12, 1996, doi: 10.1002/t1.37219966804.

M. Gnatz, L. Kof, F. Prilmeier, and T. Seifert, “A practical approach
of teaching Software Engineering,” in Proceedings 16th Conference on
Software Engineering Education and Training, 2003, pp. 120-128, doi:
10.1109/CSEE.2003.1191369.

D. Dahiya, “Teaching Software Engineering: A practical approach,”
SIGSOFT Softw. Eng. Notes, vol. 35, no. 2, p. 1-5, Mar. 2010, doi:
10.1145/1734103.1734113.

N. M. Paez, “A flipped classroom experience teaching Software Engi-
neering,” in 2017 IEEE/ACM 1st International Workshop on Software
Engineering Curricula for Millennials (SECM), 2017, pp. 16-20, doi:
10.1109/SECM.2017.6.

K. Claypool and M. Claypool, “Teaching Software Engineering through
game design,” ACM SIGCSE Bulletin, vol. 37, no. 3, pp. 123-127, Sep.
2005, doi: 10.1145/1151954.1067482.

A. Baker, E. O. Navarro, and A. Van Der Hoek, “An experimental
card game for teaching software engineering processes,” Journal of
Systems and Software, vol. 75, no. 1-2, pp. 3-16, Feb. 2005, doi:
10.1016/j.js5.2004.02.033.

P. N. Robillard, “Teaching Software Engineering through a project-
oriented course,” in Software Engineering Education, Conference on.
Los Alamitos, CA, USA: IEEE Computer Society, Apr. 1996, p. 85, doi:
10.1109/CSEE.1996.10004.

S. McConnel, Professional Software Development: Shorter Schedules,
Higher Quality Products, More Successful Projects, Enhanced Careers.
Addison-Wesley, 2004.

P. Kruchten, “Licensing software engineers?”” IEEE Software, vol. 25,
pp. 35-37, 2008, doi: 10.1109/MS.2008.149.

R. C. Martin. (2014, Jun.) My lawn. [Online]. Available: https:
//blog.cleancoder.com/uncle-bob/2014/06/20/MyLawn.html

SlashData, “The global developer population 2019,” Tech. Rep., Jul.
2019. [Online]. Available: https://sdata.me/GlobalDevPop19

B. Atkins. (2020, Nov.) The most disruptive trend of 2021: No code /
low code. [Online]. Available: https://www.forbes.com/sites/betsyatkins/
2020/11/24/the-most-disruptive- trend-of-2021-no-code--low-code/

S. Kelly and J.-P. Tolvanen, Domain-Specific Modeling: Enabling Full
Code Generation. Hoboken, NJ, USA: Wiley-IEEE Computer Society
Press, 2008, doi: 10.1002/9780470249260.

[13]
[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]
(32]
[33]

[34]

(35]

https://doi.org/10.1109/52.60586
https://dl.gi.de/handle/20.500.12116/2351
https://dl.gi.de/handle/20.500.12116/16384
https://www.aicte-india.org/education/model-syllabus
http://xn--n1aabc.xn--p1ai/poop/1cc44c15cc8843e8abc46e225ea930fa
http://xn--n1aabc.xn--p1ai/poop/1cc44c15cc8843e8abc46e225ea930fa
https://doi.org/10.1109/52.805469
https://doi.org/10.1145/2965631
https://doi.org/10.1109/EMR.1978.4306682
http://coursecatalog.web.cmu.edu/schools-colleges/schoolofcomputerscience/undergraduatecomputerscience/#bscurriculumtext
http://coursecatalog.web.cmu.edu/schools-colleges/schoolofcomputerscience/undergraduatecomputerscience/#bscurriculumtext
http://coursecatalog.web.cmu.edu/schools-colleges/schoolofcomputerscience/undergraduatecomputerscience/#bscurriculumtext
https://www.isri.cmu.edu/education/undergrad/se-minor/index.html
https://www.isri.cmu.edu/education/undergrad/se-minor/index.html
https://cs.illinois.edu/academics/undergraduate/degree-program-options/bs-computer-science
https://cs.illinois.edu/academics/undergraduate/degree-program-options/bs-computer-science
https://cs.illinois.edu/academics/undergraduate/degree-program-options/software-engineering-certificate
https://cs.illinois.edu/academics/undergraduate/degree-program-options/software-engineering-certificate
https://www.computer.org/education/bodies-of-knowledge/software-engineering
https://www.computer.org/education/bodies-of-knowledge/software-engineering
https://missing.csail.mit.edu/about/
https://doi.org/10.1109/FIE.2014.7044277
https://doi.org/10.1002/tl.37219966804
https://doi.org/10.1109/CSEE.2003.1191369
https://doi.org/10.1145/1734103.1734113
https://doi.org/10.1109/SECM.2017.6
https://doi.org/10.1145/1151954.1067482
https://doi.org/10.1016/j.jss.2004.02.033
https://doi.org/10.1109/CSEE.1996.10004
https://doi.org/10.1109/MS.2008.149
https://blog.cleancoder.com/uncle-bob/2014/06/20/MyLawn.html
https://blog.cleancoder.com/uncle-bob/2014/06/20/MyLawn.html
https://sdata.me/GlobalDevPop19
https://www.forbes.com/sites/betsyatkins/2020/11/24/the-most-disruptive-trend-of-2021-no-code--low-code/
https://www.forbes.com/sites/betsyatkins/2020/11/24/the-most-disruptive-trend-of-2021-no-code--low-code/
https://doi.org/10.1002/9780470249260

[36] M. Fowler and R. Parsons, Domain-specific languages. Addison-Wesley
/ ACM Press, 2011.

	Introduction
	Program Design Philosophy
	Misconceptions in Design-by-Analogy
	Software Engineering is Computer Science Plus Programming
	Software Engineering is Engineering for Computers
	Software Engineering Requires Prior Domain Knowledge

	Design Principles Beyond Analogies
	Software Engineers Build Digital Infrastructure
	Software Engineering is Founded in Structural Science
	Software Engineering is Domain-Agnostic

	Sample Program Outline
	Knowledge Areas
	Mathematical Foundations
	Computer Science Foundations
	Programming Foundations
	Software Engineering Core
	Advanced Topics
	Economics, Ethics, and Management
	Technical Writing and Presentation
	Informatics Elective Courses and Secondary Subjects

	Special Activities
	Standalone Projects
	Industrial Internships
	Senior Thesis or Project

	Outlook and Conclusion
	Artificial Intelligence in Software Engineering
	Standardization and Professional Organizations
	Low Code and DSLs

	References

