
Aligning the Learning Experience in a Project-Based Course:
Lessons Learned from the Redesign of a Programming Lab

Malte Mauritz
TU Dortmund University
Dortmund, Germany

malte.mauritz@tu-dortmund.de

Stefan Naujokat
TU Dortmund University
Dortmund, Germany

stefan.naujokat@tu-dortmund.de

Christian Riest
TU Dortmund University
Dortmund, Germany

christian.riest@tu-dortmund.de

Till Schallau
TU Dortmund University
Dortmund, Germany

till.schallau@tu-dortmund.de

ABSTRACT
In teaching and training the next generation of software engineers,
programming labs with students working together in small groups
provide the opportunity to obtain hands-on experience for software
projects involving multiple developers. However, more than other
types of courses, programming labs face some challenges in provid-
ing a similar learning outcome for all students. Based on feedback
and own experience from various iterations of the programming
lab at TU Dortmund University, we identified that the learning ex-
perience varies significantly due to heterogeneous prior knowledge,
experience levels, and personality traits of both students and tutors.

In this experience report, we present our approach towards align-
ing the learning experience by applying three different didactic im-
provements based on well-studied concepts: (1) the idea of worked-
out examples is transferred to teaching the software development
process by providing a small software application with all corre-
sponding artefacts like diagrams, program code and documentation,
focusing on their relationships and development activities. (2) Goal-
oriented and structured learning is used to define learning outcomes
for every group meeting as a common ground, while audience re-
sponse systems are utilized to motivate the attendance and allow
students to self-reflect on their knowledge and competence level.
(3) We harmonize the role of tutors by holding dedicated teaching
workshops for tutors’ responsibilities in the programming lab.

The different approaches are evaluated based on surveys for stu-
dents and tutors over three iterations of the programming lab at TU
Dortmund University. Both sides’ positive responses and feedback
resulted in an enumeration of lessons learned as recommendations
and support for other similar courses.

KEYWORDS
learning outcomes, audience response system, worked-out exam-
ples, tutoring, programming lab, software engineering

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SEENG’22, May 17, 2022, Pittsburgh, PA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9336-2/22/05.
https://doi.org/10.1145/3528231.3528358

ACM Reference Format:
Malte Mauritz, Stefan Naujokat, Christian Riest, and Till Schallau. 2022.
Aligning the Learning Experience in a Project-Based Course: Lessons Learned
from the Redesign of a Programming Lab. In 4th International Workshop
on Software Engineering Education for the Next Generation (SEENG’22),
May 17, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3528231.3528358

1 INTRODUCTION
Creating and developing software applications for the modern
world becomes more and more challenging because of the increas-
ing complexity of applications and growing ecosystems of software
libraries. It is thus not sufficient to teach future software engineers
how to program software. The full software development life cycle
comprises applying analysis and design methods, making archi-
tecture decisions, as well as testing and deploying the software.
Similarly vital for a successful software development process are
factors like project planning and working in a team. Our under-
graduate Computer Science curriculum at TU Dortmund University
schedules the programming lab as a mandatory course to facilitate
a project-based education for Software Engineering (cf. [8, 15]).
Our students work in groups of up to nine people on two software
projects that each span the full development life cycle. There are
usually ten groups in parallel working on the same assignments,
with each group being supervised by one tutor.

Following our goal of a genuine Software Engineering educa-
tion [5], the programming lab aims to teach students how to apply
the software engineering and programming knowledge gained in
previous courses in a practical and realistic environment and to
understand the ‘bigger picture’ of the software development pro-
cess. In addition, they learn the importance of planning and work
structure for successfully finishing a group project.

A major challenge for us, the organizers of the programming lab,
is to achieve a similar learning experience for all students and to
ensure the same learning outcomes in every iteration. However, sev-
eral influences impact the learning experience in the programming
lab.

Student participants come from different subjects with different
skill levels, experience, and prior knowledge in the field of software
development. Some participants have only rudimentary experience

https://orcid.org/0000-0003-3030-3873
https://orcid.org/0000-0002-6265-6641
https://orcid.org/0000-0002-3772-2504
https://orcid.org/0000-0002-1769-3486
https://doi.org/10.1145/3528231.3528358
https://doi.org/10.1145/3528231.3528358

SEENG’22, May 17, 2022, Pittsburgh, PA, USA Mauritz, Naujokat, Riest and Schallau

from their studies, while others already have worked in a profes-
sional environment or created software applications in their free
time.

Furthermore, each student has its own personality resulting
in different levels of involvement and commitment in the group
discussion. Some students are very engaged and dedicated, while
others are more reserved and diffident.

Differences in experience and personalities of participants di-
rectly impact the workflow and dynamics of the student groups in
the programming lab. Based on the composition of the individual
students, workflows and dynamics differ between groups and also
between iterations. For example, experienced students work more
independently and tend to create more complex solutions. As a
result, less experienced students in the group with problems in
understanding the basic design and modelling cannot contribute
equally to the development of the application.

The dynamics of groups are further influenced by the tutors’
involvement. The management of tutors in the groups’ work differ
depending on the levels of knowledge about didactic methods and
teaching experience, in particular, as they range from undergradu-
ate student assistants to post-docs. While some tutors play the role
of an observer and only act when asked for help, others are much
more involved with their group’s work, up to the point that they
behave like an additional group member.

We took over the responsibility of the programming lab in the
beginning of the COVID-19 pandemic. Prior programming lab itera-
tions did not provide a uniform learning experience for all students.
Even though a schedule with the content of each meeting was pro-
vided for the whole course, the team meetings themselves were
subject to the personal planning and execution of the tutors, who
were, however, not specifically trained for their role in project-
based courses. They were only provided by the university with a
rudimentary didactic training on teaching of exercise groups.

Furthermore, students were provided with an example imple-
mentation to compare and adopt for their development in the pro-
gramming lab. This example implementation, however, was a too
complex project, only consisted of the final product, and did not
provide sufficient documentation of the development process and
its requirements and design artefacts, i.e., diagrams.

To overcome the said challenges and thus to achieve an align-
ment of the learning experience for all students of the program-
ming lab, we implemented three didactic improvements based on
well-studied concepts. We provide a worked-out example of a small
software application called StudyPlanner as a reference point for
the whole development process (Section 3). The example includes
all artefacts, program code, documents, and tests for self-learning
and testing. Furthermore, for goal-oriented and structured learning,
we introduced prepared slides with quizzes and examples from the
StudyPlanner project for the tutors to present in the group meet-
ings, which give them a standard structure and ensure common
learning activities and intended learning outcomes (Section 4). Fi-
nally, the third improvement focuses on harmonizing the role of
tutors by schooling tutors for their specific roles and responsibilities
in the programming lab (Section 5).

Please note that we faced a difficult balancing act: on the one
hand we wanted to validate that our changes indeed improve the

learning experience, while on the other hand we needed to im-
plement them into a mandatory course that processes over 300
students a year. We chose to primarily focus on the latter and thus
emphasize here that this paper is an experience report rather than a
proper empirical study with a control group. While we are, based
on our measurements, personal assessment and tutors’ reports,
confident of having achieved a better learning experience for our
students and think that the findings are generally applicable to
similar courses, we do not have strong statistical evidence.

The remainder of the paper is structured as follows. Section 2
introduces the didactic concept and structure of the programming
lab. We describe the ideas and approaches in detail in Sections 3,
4, and 5. Section 6 presents the evaluation of the feedback from
the students and the tutors. We formalized several best practice
recommendations for similar courses based on the feedback and
evaluation results in Section 7. We finish with a conclusion and
possible ways to improve the ideas in Section 8.

2 PROGRAMMING LAB
The programming lab is a mandatory course for students in the 3rd
to 5th semester of the undergraduate programs Computer Science,
Applied Computer Science, teacher training with subject Computer
Science, Data Science, and students of other studies with minor Com-
puter Science at TU Dortmund University. It takes place twice every
semester in two variants: as a course with two meetings in a week
during the 15-week-long lecture period and as a course over 6 weeks
in the lecture-free period with daily meetings. In the prerequisite
courses for participation in the programming lab, students learn
the basics of data structures, algorithms, Java programming, sys-
tem modelling using the Unified Modeling Language (UML) [16],
software architectures, design patterns, and software testing. In the
programming lab, this content is then practically applied in two
projects: a management application and a board game. Alongside
these technical skills, students learn to make their first practical
steps in project management and team organization. Students work
with standard Software Engineering tools, i.e., JetBrains IntelliJ1 ,
Git2, and GitLab3, as well as Matrix4 and BigBlueButton5 for digital
team communication.

Up to nine students develop the two software applications as
a group supervised by a tutor. The group members are randomly
assigned (only considering priorities given for different time slots),
in contrast to more complex approaches that aim at an equal dis-
tribution of experience level, gender, and language skills [6]. The
group meetings are complemented by homework-like assignments
and the presentation of development results to the other groups.
Development activities in both projects are similar and performed
by each student group independently.
Learning Outcome
The goal of the programming lab is to provide students with their
first practical insights into the conception and implementation of
larger software applications in teams together with project and
team management. The learning outcome of the programming
1https://www.jetbrains.com/idea/
2https://git-scm.com
3https://gitlab.com/
4https://matrix.org
5https://bigbluebutton.org

Aligning the Learning Experience in a Project-Based Course: Lessons Learned from the Redesign of a Programming Lab SEENG’22, May 17, 2022, Pittsburgh, PA, USA

lab can be described according to the concept of the Constructive
Alignment by John Biggs [2]:
Students will be able to plan, develop, and implement a software
project in a team by

• decomposing a software product into its core aspects based
on a requirements specification,

• planning and modelling the software architecture graphi-
cally,

• implementing the program using an IDE,
• using the code versioning tool Git within a larger group to
ensure an efficient division of programming labour in larger
software projects,

• working with modern tools for project planning, which en-
able to divide complex tasks and form subgroups,

• working constructively in a team of up to nine developers,
reflecting on their role and collaboration,

so that they can develop suitable and operational software products
as teams in professional practice.
Curriculum
The curriculum of the programming lab comprises two software
development projects along a well-structured development process
spanning the full life cycle from analysis, design, realization, and
testing, to delivery/deployment. The first project requires students
to build amanagement application, while for the second, the groups
need to realize a board game. The tasks for the specific projects are
given through application specifications and required features. We
do not provide sample solutions and evaluate the individual results.

In the first project, the meetings consist of mini-lectures intro-
ducing the teaching content followed by time to work on the project
moderated by the tutor or, in later meetings, students of the group.
This is extended in the second project to the students’ complete
management, including designing and planning, whereas the tutors
function as stakeholders.

Both projects start with the requirements analysis and the mod-
elling of use case diagrams based on an application’s specification,
resp. the rules of the board game. Identified use cases are refined
in activity diagrams. Based on this analysis, a class diagram of the
application’s data is created – the entity model. All three models
form the requirements model. They are demonstrated to the other
groups in the first presentation after four group meetings. After
the adaption of these models to feedback from other groups, the de-
sign phase commences with the extension of the entity model into
a complete structure model of the application: similar to domain-
driven design [7], a service layer is added that together with the
entity layer forms the domain model. This domain model is further
extended by a view layer which models all classes of the applica-
tion’s user interface. After the complete structure of the application
is modelled, important functionality is further refined in sequence
diagrams. The analysis model – structure model combined with
sequence diagrams – is presented to other groups in a second pre-
sentation after seven team meetings. In the remaining time of each
project, the groups implement their applications in Java, with cor-
responding component tests, and write the user documentation.
Both application projects end with an evaluation where the other
groups inspect, test, and rate the final software application. After
the first project, we identify strengths and weaknesses in reflection

meetings with each group to address these in the development of
the second project.

The second project differs from the first in the way that we do
not specify the content of each group meeting, but only the dates
for the presentation of the requirements model and the analysis
model, including corresponding deadlines for their respective de-
velopment artefacts. The student groups are responsible to plan
their development. In addition to the evaluation of the final product
at the end of the project, we also host an AI tournament where
implemented artificial intelligences for the board games compete.

Our intention as organizers of the programming lab is to provide
students with a consistent and comprehensive learning experience
for future challenges in academic and professional settings. The
following sections present our didactic measures for aligning the
students’ learning experience in the programming lab despite in-
consistent teaching of tutors, diverse backgrounds of students, and
varying group dynamics.

3 LEARNING BYWORKED-OUT EXAMPLE
A didactic approach for teaching procedures or workflows is learn-
ing by worked-out examples, especially in well-structured domains
like mathematics or programming, where the process of finding a
solution for a problem follows a defined path of steps [17]. The goal
is to illustrate the different phases and give a reference point for
the students to use as a basis for their projects. In the following, we
first briefly introduce the concept and its theoretical background
before illustrating the structure of the work example.
Learning from Worked-Out Examples and Cognitive Load
Theory
Learning from worked-out examples is a well-known didactic con-
cept that focuses on learning from one or more examples for a task
or process without external influences or guidance. The examples
show the workflow step by step with, in most cases, additional
information for an easier understanding. The advantage of using
worked-out examples in contrast to solving problems as a learning
method is explained by work by John Sweller that resulted in the
Cognitive Load Theory [21]. It states that a problem-solving task
creates a high load on the limited capacity of the working memory
for understanding the problem and the context. This capacity is
then not available for processing the solving steps of the problem
that should be learned, which results in reduced learning success.

In contrast, the learning by worked-out examples approach relin-
quishes on the part of solving tasks and only gives the worked-out
examples, so the ineffective load is reduced, and the learner can
use all available capacity to understand the solving steps of the
process [23]. This train of thought motivates using the example
also in the slides of the group meetings (cf. Section 4) to spare time
and resources of the students to familiarize with a new example
every time.
Worked-Out Example: StudyPlanner
We developed a worked-out example for the software development
process to provide learning material that fits students’ different
skill levels, experiences, prior knowledge, and personalities along
with different group dynamics and workflows.

The example consists of a complete application with additional
diagrams, documentation, tests and explanations. The application

SEENG’22, May 17, 2022, Pittsburgh, PA, USA Mauritz, Naujokat, Riest and Schallau

Use Case: Create Course
Re

qu
ire

m
en

ts
 M

od
el

G
U

I-D
es

ig
n

An
al

ys
is

 M
od

el
Im

pl
./

Te
st Export code frames

Add documentation Write automatic tests

Find and
structure
necessary data
points

Workflow of task for role
student and program

Implement
communication
and interaction
between objects

Define
service-
classes and
methods
with
necessary
parameters

Collect relevent data with  
field in GUI

Transfer
defined
workflow

to program
architecture

(…) The user should be able to manage their courses, which means to create, modify, and delete a course and especially assign a course to a semester.  
A course always has a name, exam date, and grade. (…)

Ta
sk

Connect GUI
with service-
classes

Define use case

Define communication and
data flow between the
different layers and objects

Documentation

Code

Unit Tests and Product Test

Figure 1: Different phases of the software development pro-
cess at the use case Create Course with focus on the connec-
tions and work steps between the artefacts.

with the name StudyPlanner is a software tool that supports the
user to manage a curriculum with different modules over several
semesters. It also provides statistics over the number of collected
credit points, the state of a module, the date of an exam, and the
current average grade.

We used the worked-out example in three different approaches
to give students a wide range of perspectives on the development
process, so they can choose the right way for them.

In the first approach, the example is used in slides for different
group meetings to illustrate significant results and in quizzes to
interact with the students. This attempt is explained in detail in
Section 4.

In the second approach, all artefacts for the complete example
like diagrams, program code, tests, documentation for program code
and tests are available on a website grouped by the different phases.
This includes diagrams, documentation, tests, and the program code
with additional comments for better understanding. The program
itself can be downloaded from a git repository6 and executed for
testing or modification. Additional comments are added to explain
design decisions or unclear parts.

In the third approach, only the two individual use-cases Create
Course 7 and Show Statistics 8 are used to illustrate the connections
and working steps between the artefacts in the different phases
instead of using the whole example. This is shown in Figure 1 for

6https://github.com/tudo-aqua/study-planner
7https://github.com/tudo-aqua/study-planner#example-1-create-course
8https://github.com/tudo-aqua/study-planner#example-2-show-statistics

the use-case Create Course. The example starts with the section
Task with a text describing the use case. For the Requirements
Model, the use case diagram with the use case Create Course is
defined along with a domain model that contains all necessary data
points and relationships to represent a new course in the program.
The associated activity diagram further illustrates the workflow
for the user to create a new course and actions processed inside
the application. In the next phase, the graphical user interface is
designed to match the defined workflow and to provide input fields
for all data points. In theAnalysis Model phase, the domain model
is extended to represent the entire structure of the program. A
sequence diagram shows the communication between the different
objects following the program structure based on the predefined
workflow from the activity diagram. The class diagram provides the
code frame for the implementation. The implementation follows
the defined path in the sequence diagram.

4 STRUCTURING OF THE MATERIAL BASED
ON LEARNING OUTCOMES

Based on the observations of previous iterations of the program-
ming lab, overhauling the used material to approach the challenges
presented in Section 1 was done along two primary goals:

Introduction of structured slides
Each student should achieve the same learning outcomes.
Adjust the tutors’ material to align the taught knowledge
across all groups.

Supporting students’ competence assessment
Provide continuous competence assessments. The students
are then able to self-reflect on their knowledge and compe-
tence level.

These two goals and themethods used to achieve them are explained
in more detail in the following paragraphs.
Introduction of structured slides
As stated in Section 2, the programming lab has already defined
learning outcomes for the whole course. However, the specific
topics and goals of each session were previously not present. This
led to broadly different interpretations and execution amongst the
tutors which ultimately led to varying project results and learning
outcomes for the students.

The introduction of structured slides is used to counteract these
problems by defining concrete learning outcomes in the form of
Constructive Alignment [2] for each session of the programming lab.
With this technique, students, and tutors always know which topic
and methods should be taught in each session. Additionally, we
provide dedicated handouts for the tutors detailing the goals and
content. An example for such learning outcomes from an individual
session’s slides about activity diagrams is the following:
Students will be able to model the process of a use case based on a
given task by

• defining the actors involved,
• formulating the necessary actions in an abstract form,
• linking the individual actions logically,

so that they can define the interactions of the user and delimit the
responsibility of the user from that of the software.

https://github.com/tudo-aqua/study-planner
https://github.com/tudo-aqua/study-planner#example-1-create-course
https://github.com/tudo-aqua/study-planner#example-2-show-statistics

Aligning the Learning Experience in a Project-Based Course: Lessons Learned from the Redesign of a Programming Lab SEENG’22, May 17, 2022, Pittsburgh, PA, USA

Each session in the first project starts by introducing new topics
with their respective learning outcomes. By using these introduc-
tions at the beginning of each session, we are following the theory
of the informative lesson introduction [11]. By always introducing
the sessions’ content at the beginning and by adapting the sessions’
tasks, the students should have all necessary information available
when needed. In the best case, they should also be able to apply the
new and theoretical knowledge to practical tasks.

The introduction of learning outcomes at the beginning of each
session helps the students to get an overview of upcoming topics
and how they fit into the greater Software Engineering context. We
introduce a mechanism for self-assessments during the sessions to
self-reflect on their understanding of the content.
Supporting students’ competence assessment and develop-
ment
To enable self-assessment for the students the provided slides in-
clude small quizzes about the content introduced in each session.
They are located after each content block and contain questions
about the newly learned methods and paradigms. The quizzes vary
from finding semantic issues in given diagrams, to deciding which
software construct should be part of the final program and fixing
syntactical errors. They are always based on the continuous Study-
Planner example introduced in Section 3. A quiz would ask the
students to find errors in a given diagram, based on the definition
they learned in the related session.

These quizzes can normally be answered verbally, but the ongo-
ing COVID-19 pandemic led to the introduction of audience response
systems (ARS) [3, 12]. These can be used to get direct feedback from
the students through the usage of handheld devices on which the
asked question is displayed. The collected answers are shown to
the tutor who then can react, correct and give further explanations.
We implemented the quizzes through Mentimeter9, quick surveys
as multiple-choice questions, and the shared whiteboard feature
of the used meeting software. With these methods, the students
can reflect on their knowledge and assess whether they understood
everything correctly. Another positive side effect of ARS is the acti-
vation of inactive students [10], especially during the pandemic’s
remote sessions.

5 HARMONIZING THE ROLE OF TUTORS
The impact from alignments of meetings to learning outcomes and
unification of examples in the programming lab to the learning
experience of students is influenced by the teaching quality of
the tutors. As described in Section 1, we organizers recognized
a varying quality in the teaching among tutors with a negative
impact on the learning experience of students in the past. To ensure
an equal learning experience among all students, we identified the
need to harmonize the roles and responsibilities of tutors in the
programming lab.

We first specified the roles of tutors and their responsibilities
within the programming lab. We identified six roles and their main
tasks for tutors in the programming lab. Tutors have to (1) support
students in their learning (coach), (2) moderate group discussion
(moderator), (3) grade students’ results (auditor), and (4) provide as-
sistance for technical and implementation problems (expert). They
9https://mentimeter.com

(5) oversee the project progress of their groups (project manager)
and (6) steer the work of groups to result in an operable software
product (product manager).

Based on these six roles, eight essential responsibilities and corre-
sponding skills have been identified for tutors in the programming
lab: (1) learning outcomes, (2) group management, (3) motivation,
(4) conflict management, (5) minimal assistance, (6) moderation of
discussions, (7) grading of student performance, and (8) internal
communication.

We held four workshops on the topics (1) self-reflection of gen-
eral teaching, (2) minimal assistance, (3) motivation and activation,
and (4) conflict management to teach tutors the corresponding skill
sets. All workshops lasted about 60 minutes and were held online.
Contributions by tutors were organized and visualized using the
online-tool Padlet10.

The structures of all workshops were similar and inspired by
the didactic concepts learning by doing [20] and learning by ex-
ample [22]. We planned each workshop intending to stimulate the
exchange of experience between tutors and maximize the later ap-
plication of presented didactic methods by tutors in their teaching.
Each workshop started with a self-reflection unit about personal
experiences. Afterwards, we presented theoretical concepts to the
individual topics, which the tutors applied together to their experi-
ences.

The following paragraphs describe each workshop in detail.
Workshop 1: Self-Reflection
The workshop series started with a unit on biographic reflection
of personal teaching experiences (cf. [13]). This workshop was
envisaged to provide an overview of the responsibilities of tutors
in the programming lab and a basis for upcoming workshops.

The tutors were held to gather experiences from their work in the
programming lab or other courses, discuss their experiences, and
categorize them based on the nine responsibilities of tutors in the
programming lab. Eight tutors contributed 22 personal experiences
throughout all nine responsibilities.
Workshop 2: Minimal Assistance
The second workshop addresses the topic of minimal assistance [1,
24]. Learning outcomes of students are subject to the correct in-
tervention of tutors. In the case of student problems, tutors must
intervene and provide students with minimal information for their
assignments that these students are able to continue to solve the
assignment on their own. In addition to information scope, also the
time of intervention is important. A late intervention may lead to
frustration for struggling students and, therefore, decrease their
motivation and participation in the programming lab.

In the workshop, tutors were asked to list personal experiences
from their teaching, when and how they helped students. These
experiences were then categorized into the five levels of staged
intervention by Zech (cf. [24]): (1) motivational level, (2) feedback
level, (3) general strategic assistance, (4) associative strategic assis-
tance, and (5) associative assistance. As a result of the workshop, a
plan for the identified teaching situations with corresponding assis-
tance actions has been established, which the tutors can consider
for assisting students within their teaching.

10https://www.padlet.com

https://mentimeter.com
https://www.padlet.com

SEENG’22, May 17, 2022, Pittsburgh, PA, USA Mauritz, Naujokat, Riest and Schallau

Workshop 3: Motivation and Activation
The third workshop addresses the motivation and activation of
students to participate equally in the group discussion as well as in
the implementation of the software program. Active participation
of students in the programming lab is a prerequisite for success-
ful learning outcomes of students. However, not all students are
equally involved due to, e.g., their reserved personalities or limited
experience in Software Engineering.

In the workshop, tutors were asked to reflect upon their actions
to provide a safe environment and to motivate their students to
actively participate. Identified methods were categorized to the
basic orientations of human behaviours in the Riemann-Thomann-
Model [18]: (1) distance alignment, (2) proximity orientation, (3) per-
manent alignment, and (4) alternating orientation. Each of these
categories imposes different requirements for teaching by tutors in
the programming lab. While humans of category distance alignment
prefer independence and individuality of independent tests and
homework, humans with the need for proximity desire the social
communication and interaction of group work. Permanent aligned
humans strive for control, persistence, and organization through
thoroughly planning and repeated activities, opposed to humans
with an alternating orientation who favour the variety, spontaneity,
and creativity from changing assignments and interactions.

The workshop further addressed the problem of social loafing
(cf. [14]) and cultural distinctions of allocentric and idiocentric
cultures regarding active participation (cf. [4]).

Workshop 4: Conflict Management
The fourth workshop aimed to address common conflicts within
the programming lab and to provide tutors with strategies to ad-
dress and mitigate these conflicts. In the past, tutors failed to suffi-
ciently address emerging conflicts in their groups due to missing
knowledge of appropriate conflict solution strategies. However, it
is important that tutors address and solve conflicts timely to pre-
vent any manifestation of conflict within the groups and avoid the
reduction of perceived safety, participation, and learning outcomes
of students (cf. [9]).

The workshop started with a distinction of (1) social conflicts,
(2) internal conflicts, and (3) structural conflicts (cf. [9]). Only social
conflicts are of interest for the programming lab, as we focus on
the conflict between students within a group and conflicts between
students and tutors, with the target to ensure productive group
work throughout the programming lab.

We then asked the tutors to reflect on their experiences with
social conflicts. Nine conflicts were gathered and categorized into
the interpersonal conflict types: (1) goal conflict, (2) distributional
conflict, (3) relationship conflict, (4) role conflict, and (5) perception-
oriented conflict (cf. [19]). Following the conflict escalation by
Gasl [9], win-win solutions were identified for each conflict. Finally,
we organizers urged the tutors to remain objective and refrain from
personal interpretations throughout conflicts to make themselves
not attackable by either conflicting party.

6 EVALUATION
We evaluated our improvements to the programming lab through-
out three iterations in 2021. To measure the impact of the worked-
out example and slides (cf. Sections 3 and 4), we split the groups

into two sets: in the first, the groups used the example, slides, and
infrastructure of quizzes and ARS, whereas the second set of groups
was taught normally without these changes. To reduce the impact
of the tutors’ backgrounds, we distributed their groups evenly ac-
cording to their experience in teaching the programming lab and
furthermore ensured that no tutor had a group with the original
approach followed by one using the improved methods and mate-
rial. As already after two iterations we were very confident that
our changes indeed improved the learning experience, we did not
apply the splitting again to the third iteration to not deliberately
disadvantage half of the students.

For the tutor schooling, we introduced all tutors after the first
iteration to the description of the tutor role and educated them in
the four workshops (cf. Section 5).

We created two surveys with 28 questions for students and 32
questions for tutors to gather feedback from students about their
learning experience and tutors about their teaching experience. The
feedback from these surveys provided us with insights about the
helpfulness of the applied teaching methods for the development
and problem-solving of students from the viewpoints of students
and tutors.

Over the course of three iterations, 164 students and 25 tutors
in total have answered our surveys. Students as well as tutors
already valued the programming lab without our improvements.
However, the feedback from groups which used the presented di-
dactic changes has been even more positive. The results indicate
that our improvements allow the programming lab to be held more
effectively for both students and tutors to create a better learning
experience. We have selected six of the most relevant questions
from the total 60 survey questions for demonstrating the impact of
our approaches.

Students: Clear definition of learning outcomes
Firstly, Figure 2a shows the benefit of using structured slides with
learning outcomes for each session (cf. Section 4). The results indi-
cate that by introducing structured slides we were able to improve
the clearness of the individual learning outcomes of each session
in groups using the slides.

Students: Introduction of a continuous example
The results (cf. Figure 2b) of groups using slides with predefined
examples, as described in Section 3, show not only that the exam-
ples were received better when predefined. They also demonstrate
that examples in general are a useful method to pass on knowl-
edge. The small increase between the two groups stems from the
common usage of examples by the tutors. In summary, around 81%
of the students agree to the fact that using examples is improving
their understanding of the topic. This underlines the importance of
examples for such classes as explained in Section 3.

Students: Management ability of tutors
One of the desired outcomes of our approach is the alignment of
teaching behaviours and applied methods for the tutors. For that
purpose, besides providing slides and specific infrastructure, we
also tried to harmonize their role, as described in Section 5. The
combination of both methods leads to an increase in the tutors’
rating regarding their management of the sessions (cf. Figure 2c).

Aligning the Learning Experience in a Project-Based Course: Lessons Learned from the Redesign of a Programming Lab SEENG’22, May 17, 2022, Pittsburgh, PA, USA

−2 −1 0 1 2
0

20

40

60

80

100

Approval (low to high)

T
o
ta
l
in

%

Traditional lab Novel approach

(a) Question:Were you always aware of the
sessions’ intended learning outcome?

−2 −1 0 1 2
0

20

40

60

80

100

Approval (low to high)

T
o
ta
l
in

%

Traditional lab Novel approach

(b) Question: How did the examples help
you to understand the sessions’ content?

−2 −1 0 1 2
0

20

40

60

80

100

Approval (low to high)

T
o
ta
l
in

%

Traditional lab Novel approach

(c) Question: How do you rate the manage-
ment of the sessions by your tutor?

Figure 2: Survey results from student participants. Higher values mean a higher agreement to the asked question.

It is important to consider that the personality and personal admin-
istration of each tutor influences this feedback. However, we are
confident that the tendency is in favour of our approach.

Based on the harmonization of the tutor’s role in the program-
ming lab the second part of our survey focussed on the perception
of the tutors. Again, the tutors were also split into the two groups
already discussed above.
Tutors: Availability of information
According to Figure 3a there is a positive trend in the availability
of necessary information. Over 75% of tutors using slides reported
having all necessary information for each session. In contrast, only
50% of tutors without slides stated the same. This shows that by
providing examples, quizzes, learning outcomes and general in-
formation material (cf. Section 3 and 4) we were able to improve
finding the necessary information.
Tutors: Clearly defined tasks per session
Figure 3b shows that 69% of the tutors using slides are aware of their
tasks in each group session, whereas only 50% of tutors without
slides state to know their tasks. Both groups contained inexperi-
enced tutors. The results demonstrate that using slides with related
handouts improved the awareness of the predefined tasks for each
session. As a result, we see the effect of harmonizing the tutors
throughout the whole programming lab.
Tutors: Teaching the intended content
While overall the tutors are quite confident in teaching the intended
content, Figure 3c indicates that tutors using slides had fewer prob-
lems than the tutors without slides. This improvement originates
from providing structured material and instructions given to the
tutors prior to the course.

7 LESSONS LEARNED
This experience report with its promising results could help other
teachers, organizers and tutors of similar labs by adapting our
findings to their courses. For this reason, we are summarizing our
lessons learned from our didactic overhaul of the programming lab.
Use a continuous example
The use of a continuous example throughout the whole lab helped
the students to follow our thought development process. It is also
easier to understand new additions and concepts applied to the
same example instead of having to rethink the example every time.
Provide structured material
Providing structured material for the tutors aligns the pacing and

description of topics. Additionally, new tutors can take the material
to prepare sessions properly and have an easier time getting started.
Define learning outcomes of each session
For each session, the learning outcomes should be available and
presented to the students and tutors. This helps to set the focus of
the session onto specific parts of the content. It also declares which
information can just be seen as knowledge and which should be
applied later on.
Include tutors in the process
The tutors should be trained to correctly transfer information and
should always know their role in the course. Additionally, they
should be brought into the process of improving the course, as they
are the ones teaching and should, therefore, bring in their own
experience.

8 CONCLUSION
The goal to provide all students with an equivalent positive learning
experience in our project-based programming lab has been chal-
lenging over the last years by different levels of knowledge and
skill among students, unequal compositions of teams, and diverse
approaches to teaching among tutors.

We have introduced three approaches in the programming lab
based on well-known didactic concepts to address these challenges:
First, we introduced a common example of a study planner project
for the complete development process with all UML diagrams and
implementation in Java. Second, we aligned the meetings among all
groups by introducing prepared slides with the intended learning
outcomes as well as quizzes and surveys. Finally, we harmonized
the role of tutors in the programming lab by teaching tutors their
responsibilities, i.e., in general teaching, minimal assistance, activa-
tion and motivation, and conflict management, in four workshops.

Throughout three iterations of the programming lab in 2021 we
gathered the feedback of 164 students and 25 tutors by surveys.
Students honoured the improved communication of each meeting’s
intended learning outcome, the examples used in the meetings to
introduce individual development activities, and the better session
lead of tutors. Tutors valued the improved teaching of students by
the provided examples and the predefined content of each meeting.
Based on this positive feedback, the improvements (with some
extensions and refinements) are now permanently included into the
course and have led to increased ratings in the teaching evaluation
the faculty conducts each semester.

In themost recent iteration, we introduced further improvements
to the programming lab. We replaced Java with Kotlin, which is

SEENG’22, May 17, 2022, Pittsburgh, PA, USA Mauritz, Naujokat, Riest and Schallau

−2 −1 0 1 2
0

20

40

60

80

100

Approval (low to high)

T
o
ta
l
in

%

Traditional lab Novel approach

(a) Question: How easily were you able to
find the information for each session?

−2 −1 0 1 2
0

20

40

60

80

100

Approval (low to high)

T
o
ta
l
in

%

Traditional lab Novel approach

(b) Question: Were the tasks for each ses-
sion always clearly defined and under-
standable?

−2 −1 0 1 2
0

20

40

60

80

100

Approval (low to high)

T
o
ta
l
in

%

Traditional lab Novel approach

(c) Question: How comfortable did you feel
teaching your students the intended con-
tent of each group meeting?

Figure 3: Survey results from the lab’s tutors. Higher values mean a higher agreement to the asked question.

becoming more and more popular in education11. It proves to be
a modern programming language that is easy to learn and teach,
but remains in the Java ecosystem already known to our students.
Furthermore, the effort for developing the GUI, which so far was
realized with JavaFX, was disproportionately high with only lit-
tle additional learning outcomes. We instead developed and used
BoardGameWork12, a lightweight Kotlin UI framework for board
games. This streamlining allowed us to add further content to the
lab, such as teaching a Git branching model or advanced IDE fea-
tures, e.g., refactoring or debugging. The informal feedback from
students and tutors so far has been overwhelmingly positive.

Until today, the didactic improvements have only been applied
in an online format of the programming lab due to the COVID-19
pandemic. However, we are confident that these didactic changes
provide a similar impact on the learning experience in the usual
in-person environment of the programming lab.

AUTHORS’ BIOGRAPHIES
All authors research and teach (as post-docs and PhD students)
at the chair for Software Engineering of the Computer Science
department at TU Dortmund University, where we recently took
responsibility for organizing the programming lab. To modernize
and streamline the lab, we applied our knowledge from previous
teaching experience in Software Engineering courses and a didactic
certificate program. Our primary goal is to improve the lab to
effectively align the students’ learning outcome among all groups
under heterogeneous conditions by continuously modernizing the
programming lab and applying further didactic improvements.

REFERENCES
[1] Hans Aebli. 1965. Grundformen des Lehrens: ein Beitrag zur psychologischen

Grundlegung der Unterrichtsmethode. (1965).
[2] John Biggs. 1996. Enhancing Teaching Through Constructive Alignment. Higher

Education 32 (10 1996), 347–364. https://doi.org/10.1007/BF00138871
[3] Jane E Caldwell. 2007. Clickers in the large classroom: Current research and

best-practice tips. CBE—Life Sciences Education 6, 1 (2007), 9–20. https://doi.org/
10.1187/cbe.06-12-0205

[4] Catherine L Caldwell-Harris and Ayse Aycicegi. 2006. When personality and
culture clash: The psychological distress of allocentrics in an individualist culture
and idiocentrics in a collectivist culture. Transcultural psychiatry 43, 3 (2006),
331–361.

[5] SimonDierl, Falk Howar, MalteMues, Stefan Naujokat, and Till Schallau. 2021. Do
Awaywith the Frankensteinian Programs! A Proposal for a Genuine SE Education.
In 2021 Third International Workshop on Software Engineering Education for the
Next Generation (SEENG). 26–30. https://doi.org/10.1109/SEENG53126.2021.00012

11https://kotlinlang.org/education
12https://github.com/tudo-aqua/bgw

[6] Dora Dzvonyar, Lukas Alperowitz, Dominic Henze, and Bernd Bruegge. 2018.
Team Composition in Software Engineering Project Courses. In 2018 IEEE/ACM
International Workshop on Software Engineering Education for Millennials (SEEM).
16–23.

[7] Eric Evans. 2003. Domain-Driven Design: Tacking Complexity In the Heart of
Software. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[8] Maria Lydia Fioravanti, Bruno Sena, Leo Natan Paschoal, Laíza R. Silva, Ana P.
Allian, Elisa Y. Nakagawa, Simone R.S. Souza, Seiji Isotani, and Ellen F. Barbosa.
2018. Integrating Project Based Learning and Project Management for Software
Engineering Teaching: An Experience Report. In Proceedings of the 49th ACM
Technical Symposium on Computer Science Education (Baltimore, Maryland, USA)
(SIGCSE ’18). Association for ComputingMachinery, New York, NY, USA, 806–811.
https://doi.org/10.1145/3159450.3159599

[9] Friedrich Glasl. [n. d.]. Konfliktmanagement ein Handbuch für Führungskräfte,
Beraterinnen und Berater. HauptVerl. Freies Geistesleben.

[10] Charles R. Graham, Tonya R. Tripp, Larry Seawright, and Georgel. Joeckel. 2007.
Empowering or compelling reluctant participators using audience response sys-
tems. Active Learning in Higher Education 8, 3 (2007), 233–258. https://doi.org/
10.1177/1469787407081885 arXiv:https://doi.org/10.1177/1469787407081885

[11] Jochen Grell and Monika Grell. 1996. Unterrichtsrezepte. Beltz. https://ixtheo.de/
Record/216344956, zuletzt geprüft am 25.08.2021.

[12] Robin H. Kay and Ann LeSage. 2009. Examining the benefits and challenges
of using audience response systems: A review of the literature. Computers &
Education 53, 3 (2009), 819–827. https://doi.org/10.1016/j.compedu.2009.05.001

[13] M.V. Klementyeva. 2016. Biographical Self-Reflection as a Resource for Personal
Development in Adults. Cultural-Historical Psychology 12 (04 2016), 14–23. https:
//doi.org/10.17759/chp.2016120102

[14] Bibb Latané, Kipling Williams, and Stephen Harkins. [n. d.]. Many hands make
light the work: The causes and consequences of social loafing. 37, 6 ([n. d.]), 822.

[15] Paula Morais, María João Ferreira, and Bruno Veloso. 2021. Improving Student
EngagementWith Project-Based Learning: A Case Study in Software Engineering.
IEEE Revista Iberoamericana de Tecnologias del Aprendizaje 16, 1 (2021), 21–28.
https://doi.org/10.1109/RITA.2021.3052677

[16] Bernd Oestereich and Axel Scheithauer. 2013. Analyse und Design mit der UML
2.5. Oldenbourg Wissenschaftsverlag.

[17] A Renkl. 2002. Worked-out examples: instructional explanations support learning
by self-explanations. Learning and Instruction 12, 5 (2002), 529–556. https:
//doi.org/10.1016/S0959-4752(01)00030-5

[18] Fritz Riemann. 2011. Grundformen der Angst. E. Reinhardt.
[19] Siegfried Rosner. [n. d.]. Gelingende Kommunikation - revisited: Ein Leitfaden für

partnerorientierte Gesprächsführung, wertschöpfende Verhandlungsführung und
lösungsfokussierte Konfliktbearbeitung. Rainer Hampp Verlag.

[20] Roger C Schank, Tamara R Berman, and Kimberli A Macpherson. [n. d.]. Learning
by doing. 2, 2 ([n. d.]), 161–181.

[21] John Sweller. 1988. Cognitive load during problem solving: Effects on learning.
Cognitive science 12, 2 (1988), 257–285.

[22] J Gregory Trafton and Brian J Reiser. 1993. Studying examples and solving
problems: Contributions to skill acquisition. In Proceedings of the 15th conference
of the Cognitive Science Society. Citeseer, 1017–1022.

[23] Tamara Van Gog, Fred Paas, and John Sweller. 2010. Cognitive load theory:
Advances in research on worked examples, animations, and cognitive load mea-
surement. Educational Psychology Review 22, 4 (2010), 375–378.

[24] Friedrich Zech. [n. d.]. Grundkurs Mathematikdidaktik: theoretische und praktische
Anleitungen für das Lehren und Lernen im Fach Mathematik. Beltz.

https://doi.org/10.1007/BF00138871
https://doi.org/10.1187/cbe.06-12-0205
https://doi.org/10.1187/cbe.06-12-0205
https://doi.org/10.1109/SEENG53126.2021.00012
https://doi.org/10.1145/3159450.3159599
https://doi.org/10.1177/1469787407081885
https://doi.org/10.1177/1469787407081885
https://arxiv.org/abs/https://doi.org/10.1177/1469787407081885
https://ixtheo.de/Record/216344956
https://ixtheo.de/Record/216344956
https://doi.org/10.1016/j.compedu.2009.05.001
https://doi.org/10.17759/chp.2016120102
https://doi.org/10.17759/chp.2016120102
https://doi.org/10.1109/RITA.2021.3052677
https://doi.org/10.1016/S0959-4752(01)00030-5
https://doi.org/10.1016/S0959-4752(01)00030-5

	Abstract
	1 Introduction
	2 Programming Lab
	3 Learning by Worked-Out Example
	4 Structuring of the material based on learning outcomes
	5 Harmonizing the Role of Tutors
	6 Evaluation
	7 Lessons Learned
	8 Conclusion
	References

